A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

Authors

  • Iraj Mahdavi Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
  • Javid Jouzdani Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Mohammad Mahdi Paydar Department of Industrial Engineering, Babol University of Technology, Babol, Iran
  • Mostafa Moradgholi Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
Abstract:

Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A HYBRID GENETIC ALGORITHM FOR A BI-OBJECTIVE SCHEDULING PROBLEM IN A FLEXIBLE MANUFACTURING CELL

 This paper considers a bi-objective scheduling problem in a flexible manufacturing cell (FMC) which minimizes the maximum completion time (i.e., makespan) and maximum tardiness simultaneously. A new mathematical model is considered to reflect all aspect of the manufacturing cell. This type of scheduling problem is known to be NP-hard. To cope with the complexity of such a hard problem, a genet...

full text

Robust Optimization Approach for Design for a Dynamic Cell Formation Considering Labor Utilization: Bi-objective Mathematical Model

In this paper, robust optimization of a bi-objective mathematical model in a dynamic cell formation problem considering labor utilization with uncertain data is carried out. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all the possible future scenarios. In this research, cost parameters of the cell formation and demand fluctuation...

full text

A genetic algorithm approach for a dynamic cell formation problem considering machine breakdown and buffer storage

Cell formation problem mainly address how machines should be grouped and parts be processed in cells. In dynamic environments, product mix and demand change in each period of the planning horizon. Incorporating such assumption in the model increases flexibility of the system to meet customer’s requirements. In this model, to ensure the reliability of the system in presence of unreliable machine...

full text

Solving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization

Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...

full text

A New Multi-Objective Model for Dynamic Cell Formation Problem with Fuzzy Parameters

This paper proposes a comprehensive, multi-objective, mixed-integer, nonlinear programming (MINLP) model for a cell formation problem (CFP) under fuzzy and dynamic conditions aiming at: (1) minimizing the total cost which consists of the costs of intercellular movements and subcontracting parts as well as the cost of purchasing, operation, maintenance and reconfiguration of machines, (2) maximi...

full text

A Fuzzy Bi-Objective Mathematical Model for Sustainable Hazmat Transportation

Today, transportation of hazardous materials (i.e., hazmat) is a very important issue for researchers due to the risk of this transit, which should be considered for development of industries and transportation. Therefore, a model that is useful should consider the risk and damage to humanitarian and environmental issues due to transit of hazmat materials. By considering the related cost, the r...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 3

pages  -

publication date 2016-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023